Удивительный мир растений

Удивительный мир растений

Значение растительного мира в жизни человека и животных

ГЛАВНАЯ СТРАНИЦА

Хранение цветов

Помидоры

Грибы

Ядовитые растения

Яблоневый сад

Крушина

Ягодные растения

Георгины

Статьи

Статьи на разные темы

 

 

 

 

К тайне механизма действия фитогормонов

Одной из главных проблем современной физиологии и биохимии растений остается познание механизма действия фитогормонов. Фитогормоны вызывают сложнейшие физиологические процессы, о которых ранее шла речь: стимуляцию роста, ускорение развития, созревания, торможение роста. Гормоны контролируют фотосинтез, дыхание, корневое питание и водный режим растений. Относительно немногочисленные молекулы фитогормонов оказывают, однако, глубокое воздействие на жизнь растения. Каковы же причины разнообразных эффектов, вызываемых фитогормонами? Что предшествует видимым реакциям?

Основой любого роста живых существ - растении и животных, как мы знаем, является рост клеток. Выше говорилось о том, что в жизненном цикле растения имеется особая стадия, которой нет у животных - это рост растяжением. Внешне данное явление выражается в значительном увеличении размеров клетки, которая из-за поступления большего количества воды раздувается, подобно воздушному шару.

Растяжение клетки возможно в трех направлениях. Поэтому различают три типа клеточного роста: первый тип - продольное растяжение, ведущее к образованию сильно вытянутых цилиндрических клеток; второй - равномерное растяжение, так называемой изодиаметрический рост, который наблюдается у клеток корнеплодов и плодов; третий тип - растяжение верхушки клетки, благодаря чему образуются корневые волоски, пальцевые трубки и волоски хлопчатника.

Немецкий физиолог Ю. Сакс первый в конце прошлого века высказал мнение, что направление растяжения зависит от расположения молекул в клеточной стенке, а не от внутреннего давления, создаваемого в клетке осмотическим поступлением воды. Электронный микроскоп подтвердил это предположение. Микрофибриллы целлюлозы являются одним из основных факторов, определяющих форму клеток и анатомическое строение растения в целом. При равномерном растяжении целлюлозные микрофибриллы расположены беспорядочно. Но если клетке предстоит во время растяжения приобрести цилиндрическую форму, то фибриллы целлюлозы будут откладываться более или менее перпендикулярно будущей продольной оси клетки. Это способствует ее удлинению под влиянием тургорного давления. Первоначальное расположение микрофибрилл, от которых зависит форма растущей клетки, определяется генетической программой развития клетки.

Итак, отчего же начинается растяжение клетки? Существует распространенное мнение, в пользу которого есть много экспериментальных доказательств, что здесь большую роль играет ауксин. Под его влиянием клеточная стенка становится более рыхлой и эластичной, а поступающая вода увеличивает размеры клетки. Затем после растяжения она опять становится жесткой, снова под действием гормона разрыхляется, растягивается и в конце концов обретает жесткую форму. Разрыхление и закрепление быстро следуют одно за другим и в результате граница между ними стирается. Это происходит за счет того, что постоянно идет синтез новых микрофибрилл целлюлозы, которые наслаиваются с внутренней поверхности клеточной стенки, и общая толщина первичной клеточной стенки, таким образом, из-за растяжения не уменьшается. Утолщение клеточной стенки при растяжении становится возможным благодаря внедрению новых молекул целлюлозы в промежутки между старыми.

Каков же механизм запуска и регуляции роста клетки? В середине 30-х годов немецкие ученые С. Штруггер и У. Pyггe в опытах с отрезками проростков подсолнечника установили, что регуляция роста клеток осуществляется путем изменения концентрации водородных ионов (Н+). Различные кислоты увеличивают растяжимость стенок не только живых клеток, но и убитых кипящей водой. Ученые пришли к выводу, что главное в действии ионов Н+ - набухание пектиновых веществ клеточных стенок, в результате чего разрыхляется прочный целлюлозный каркас.

Таким образом, опыты показали, что ионы Н+ действуют и на цитоплазму, и непосредственно на клеточные стенки. Это направление исследований получило название теории "кислого роста". Лишь через 30 лет был подробно изучен ее механизм. Выяснилось, например, что отрезки этиолированных стеблей гороха и других растений очень быстро реагируют на действие кислых растворов. В течение 1-10 минут наблюдается их интенсивный рост, который сопровождается увеличением эластичности и пластичности клеточных стенок. Однако в регуляции роста клеток, помимо "кислого роста", важное значение имеет ауксин.

Американские ученые А. Хагер, Г. Менцель и А. Краусс, исследуя эффект "кислого роста" у проростков подсолнечника и отрезков колеоптилей овса, предложили собственную теорию, согласно которой ауксин стимулирует рост растяжением у отрезков колеоптилей за счет регуляции кислотности в клеточной стенке. Они предположили, что ауксин влияет на эластичность клеточной стенки и рост клетки благодаря своему действию на своеобразный ионный насос, или помпу, находящуюся в плазмолемме. Плазмолемма - это тончайшая одинарная мембрана, разграничивающая толщу цитоплазмы и клеточной стенки. Работа же ионного насоса заключается в создании разности биоэлектрических потенциалов, что обеспечивает циркуляцию слабых электрических микротоков в клетке.

Вскоре стали известны экспериментальные данные, подтверждающие эту теорию. В Ленинградском государственном университете под руководством доктора биологических наук В. В. Полевого были проведены опыты с использованием мельчайших электродов на отрезках колеоптилей кукурузы после обработки ауксином, в результате которых обнаружились очень слабые затухающие электропозитивные волны. Повышалась кислотность среды, в которой находились отрезки колеоптилей, и одновременно снижалась кислотность тканей отрезков.

Величина этих кислотно-щелочных сдвигов зависела от концентрации ауксина (ИУК). Ученые предположили, что ИУК активирует ионные сдвиги - противоположный транспорт ионов водорода (Н+) и ионов кальция (Са2+). Такой транспорт требует затраты энергии АТФ. Следовательно, ауксин активирует работу водородного насоса (Н+ - помпы) и увеличивает концентрацию ионов водорода в клеточной стенке. Это, в свою очередь, вызывает активацию ферментов - кислых гидролаз, изменяющих, разрыхляющих клеточную стенку, что способствует росту клетки растения.

Общая схема механизма действия ИУК, предложенная ленинградскими учеными, изображена на рисунке. ИУК взаимодействует со свободными рецепторами в плазмолемме, иными словами - переносчиками молекул ИУК, по-видимому, белковой природы, в результате чего включается водородный насос - молекулярный генератор микротока в растении. Наблюдается активный транспорт ионов водорода (Н+) наружу в клеточную стенку, а ионов кальция (Са2+) и калия (К+) - из клеточной стенки обратно в цитоплазму. Из-за подкисления клеточная стенка быстро размягчается. Одновременно ИУК может взаимодействовать с другим рецептором - белком и образовывать комплекс ИУК и рецептора, который проникает в ядро клетки и оказывает влияние на активность генов.

Общая схема механизма действия ауксина на рост клеток в фазе растяжения

Рис.1. Общая схема механизма действия ауксина на рост клеток в фазе растяжения

Если включение ИУК водородного насоса рассматривают как быструю реакцию растительной клетки на воздействие гормона, то второй путь действия ауксина более медленный - через систему белков-рецепторов на геном клетки. Этот путь через активацию генов тоже может привести к разрыхлению клеточной стенки, увеличению ее объема и затем новому синтезу веществ клеточной стенки.

Гипотеза о специфическом действии гормона ауксина на водородный насос ныне привлекает исследователей еще и тем, что в какой-то степени объясняет появление биоэлектрических зарядов на поверхности растительных тканей после обогащения их гормоном. Еще в 1927 году академик Н. Г. Холодный высказал мысль, что в основе движения растений лежит электрополяризация тканей органов растения. Действительно на поверхности тканей, богатых ауксином, преобладают положительные заряды по отношению к тканям бедных ауксином. Разность потенциалов (зарядов) создает подходящие условия для направленного транспорта продуктов жизнедеятельности под влиянием гормона. Может, в этом и заключается механизм аттрагирующего, притягивающего питательного действия вещества ауксина.


Смотрите также:
Действие биоцидов на структуру и свойства мембран
Различия в кислотности поверхностных вод
Классификация живых существ

 


главная

назад

вперёд

 




главная

назад

вперёд

 

http://www.valleyflora.ru/
Rambler's Top100